SOIL PARAMETERS REQUIRED TO SIMULATE THE DYNAMIC lateral response of model piles in stiff clay

Prepared by
ROGER A. BROWN and HARRY M. COYLE
Soil Mechanics Division
Department of Civil Engineering
Texas A\&AM University

August 1971

circulating copy Sea Grant Deposiiory

soil parameters required to simulate the dynamic lateral resforse of mciel piles in stiff clay

by

Roger A. Brown and Harry M. Coyle Soil Mechanics Division Civil Engineering Department Texas ABM University

Partially supported by the Sea Grant Program, National Oceanic and Atmospheric Administration, U.S. Department of Commerce

Institutional Grants $6 \mathrm{H}-59$ and $\mathrm{GH}-101$ to
Texas A\&M University

Sea Grant Publication No. TAMU-SG-71-218 Coastal and Ocean Engineering Division Report No. 144 - C.O.E.

ABSTRACT

Methods to obtain the soil parameters needed to simulate the dynamic response of a laterally loaded pile were developed in this research. Instrumented model piles of various diameters and embedded lengths were driven into stiff clay and tested laterally under free vibration conditions. Field data of bending moments and accelerations versus time were obtained.

In this research the dynamic response of the model piles was predicted using an analytical solution. The nontinear soil load-displacement characteristics were modeled with a modified Kelvin-Voight rheological model. The field data and the predicted response of the piles were compared and correlated. Using the correlation and laboratory triaxial tests on the soil, the soil parameters required to achieve satisfactory agreement between tile field and predicted response of the pile were evaluated.

Results of this study indicate that the two soil parameters, the soil spring and soil quake, which represent the nonlinear characteristics of the soil are functions of the pile diameter. Together these two soil parameters greatly influence the magnitude and distribution of the bending moments with depth. The arount of soil damping is a function of the pile velocity or frequency of vibration and is significant for the velocities and frequencies encountered in this study.

PREFACE

In September, 1968, a research study was initiated to investigate the dynamic response of a laterally loaded pile. During the first year (1968-69) of this study, a numerical method of analysis, adapted for computer usage, was successfully formulated. This work was partially funded by institutional grant Gll-26, and research report TAMU-SG-70-224 which covered the first year's work was published.

As a part of a continuing study, Texas A\&M University recejved support in the Sea Grant Program for 1969-70 through institutional grant GH-59. This support was used to investigate the dynamic response of laterally-loaded model piles in clay. Soil parameters were evaluated from field loading tests conducted on instrumented model piles in clay. This report presents the results of this investigation. The field tests were conducted during the summer of 1970 but the analysis of data and the writing of this report was completed during the 1970-71 year under institutional grant GH-101.

This report was written by the senior author in partial fulfillment of the recuirements for the Docter of Philosophy degree. The junior author was the major advisor and principal investigator on the entire project.

TABLE OF CONTENTS

Page
ABSTRACT ii
PREFACE iii
TABLE OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
iNTRODUCTION 1
Nature of the Problem 1
Present Status of the question 2
Objectives 8
FIELD TESTS 10
Test Site 10
Test Program 10
Test pipe properties and instrumentation 14
Test Proredure 17
SOIL PARAMETERS FOR MODIFIED KELVIN-VOIGHT MODEL 19
Soi] Smring, K 13
Soil Zuake, ?. 27
Soil Damping Factor, J 29
comparison of field and predicted pile response 31
3 Inch Dile Tests 32
1.25 Inch Pile Tests 42
2 Inch file Tests 55
SUMMARY OF TEST RESILLTS 72
Effect of K 72
Effect of 76
Effect of J and N 76
Effect of Pile Diameter and Erbedded Length. 78

TABEE OF CONTENTS (CONT:NUSD)

Page
CONCLUSIONS 80
RECOMMENDATIONS 83
APPENDEX : - REFERENCES 85
APPENDIX iI - NOTATION 88
APPENDIX III - LABORATORY SOIL TEST DATA 90
APPENDIX IV - FIEID DATA 94

IMTRODUCTION

Nature of the Problem. - Many types of offshore structures have recently evolved for many different purposes. The oil companies are perhaps the largest single industry intimately involved with offshore structures and their design. Drilling piatforms are being located in deemer water as demands for oil are ever increasing. Storage structures for oil are being built below the ocean surface. Defense installations and weather recording devices are also constructed offshore. As structures are built farther offshore, the design complexities multiply as a result of the more severe sea conditions encountered.

Most cffshore structures are supported by piles driven deep into the ocean bottom. The oil companies already have sore drilling nlatforms in water un to 400 feet deep and it will be only a matter of time before they go even deeper or pernans use some sort of submerged drilling platform. In the design of these structures, frequently tie lateral loads imposed by wind, waves, and ice are the critical design factors. These forces are repetitive and are time-dependent. In some instances, such as a breaking wave, these forces could be considered inpulsive.

Structures built on file foundations in seismic regions are also subjected to severe Gamic latera? loads. In the past, these dynamic effects have been civen littie consideration because of their complexities and the design engineer's inability to cope With them. Wich the development of the high speed computer, it is now feasible to consider dynamic effects in the design of structures. Knowledee of the soil-pile interaction and waterpile interaction in the case of offshore structures is imperative if the dynamic response of the pile is to be accurately predicted. A literature review shofed that much work has been done concerning the soil-pile interaction or water-pile interaction. Data from either full-scale tests or model tests are almost nonexistent and are badly needed if the dynamic response of a laterally loaded pile is ever to be understood. Present Status of the Question. - Davisson (3) has presented a very complete survey of research on laterally loaded piles through 1960. Much riore work on the problem from an analytical viewooint has been completed in the last ten years due to the increased versatility and use of the electronic computer. Treating a laterally loaded pile as a beam on an elastic foundation, Palmer and Thompson (13), Palmer and Brown (12), and Gleser (6) have each developed a numerical computer solution using finite difference techniques.

Analytical description of the nonlinear soil behavior has always been troubiesome to the engineer. Even thougin sone
attempts are being made to develop constitutive equations for soils, a generally accepted method is to simulate the soil behavior with some type of rheological model. McClelland and Focht (11) were the first to make a significant attempt to treat the nonlinearity of the soil resistance to lateral deflection. By making empirical correlations between laboratory tests and field tests, they developed nonlinear load-displacement curves. Using the load-displacement curve approach, Matlock and Reese (10) developed an analytical solution for the laterally loaded pile problem that dealt with nonlinear soil-pile interaction using finite difference techniques. These analytical solutions, however, are valid only under static loads and cannot be applied for dynamic loads.

In the early 1960's, Smith (22) and Samson, Hirsch, and Lowery (20) introduced a modified form of the Kelvin-Voight model in pile driving analysis. Tucker (25) in 1964 made the first attempt to handle analytically the dynamic laterally loaded pile problem. Using a finite element representation of the pile, he treated the soil as an elastic medium and used a finite difference technique for solution. In 1970, Ross (19) developed an analytical solution for the dynamic response of an offshore pile when subjected to lateral loads. He utilized Airy or linear wave theory for the water-pile interaction and used a finite element representation of the pile. Ross considered a nonlinear soil load-displacement relationship by using
the modified Kelvin-Voight model of Smith (22). Rheological models have been used for years by engineers to define the resistance of a material undergoing dynamic loading. A schematic diagram of the model used by Ross and its load-displacement characteristics are shown in Fig. 1. The dynamic resistance of the model is expressed in equation form as:

$$
\begin{equation*}
P_{\text {Dynanic }}=P_{\text {Static }}\left(!+J V^{N}\right) \tag{1}
\end{equation*}
$$

where: $P_{\text {Dynamic }}$ is the dynamic load
$P_{\text {Static }}$ is the static load
J is the soil damping factor
V is the velocity of the pile
N is the power to which the velocity must be raised for d to be constant.

The static load, $P_{\text {Static }}$, is the product of a linear soil spring, k, and a displacement, y, and is expressed in equation form as:

$$
\begin{equation*}
F_{\text {Static }}=K y \tag{2}
\end{equation*}
$$

It should be noted that when the displacements are greater than the maximum elastic displacement or quake of the soil, Q, equation 2 becomes:

$$
\begin{equation*}
F_{\text {Static }}=k 0 ; y \geq 0 \tag{3}
\end{equation*}
$$

The linear soil spring, K, can be evaluated in several different ways. Perhaps the best and most reliable method is by conducting horizontal load tests on full-scale piles embeded in the soil and instrumented with strain gages. How-

MODIFIED SMITH EQUATION

$$
P_{\text {DYNAMIC }}=P_{\text {STATIC }}\left(?+J W^{N}\right) \quad 0.0<N<1.0
$$

FIG. 1.- SOIL RHEOLOGICAL MODEL AND LOAD-DISPLACEMENT CHARACTERISTICS [After Ross (19)]
ever, because of the expense of these field tests, it is desir$a b l e$ to be able to fetermine K from either laboratory tests or from plate load tests. The value of K for a laterally loaded pile can be determined by multiplying the coefficient of horizontal subgrade reaction, k_{H}, by the loaded area of the pile segment. Terzaghi (24) suggests determining a coefficient of subgrade reaction, k_{s}, from vertical plate loads using one foot square rigid plates. The value of k_{H} and therefore K can then be detemined for a pile by dividing k_{s} by 1.5 times the pile dianeter according to Terzaghi (24).

Vesic (26) developed a method of calculating k_{H} from the soil and pile properties that can be determined in laboratory tests. He expressed k_{H} as a function of: (1) pile width and stiffness, and (2) Poisson's ratio of the soil and the secant modulus of the soil measured at one half the ultimate load in an undrained triaxiâl test. Vesic's equation can be simplified and exaressed in terms of the pile width, the vertical coefficient of subgrade reaction, and a factor, α. The factor, α, is a function of the pile properties and soil strength and has been found by Broms (1) to vary between 0.32 and 0.40 for steel piles driven into cohesive soils.

The variation of k_{H} with depth is very important. Several different distributions have been assumed for clays by various investigators. Patmer and Brown (12) expressed k_{H} as an exponential function of depth. Davisson and Gill (4) have assumed
it to be constant or a step function with depth. Reese and Matlock (17) have assumed k_{H} to be directly proportional to depth. Gill and Demars (5) have indicated that such simplified assumed relationships are deficient because of the nonhomogeneity of naturally occurring soils as well as the nonlinear loaddisplacenent characteristics of a soil. The introduction of load-displacement curves by McClelland and Focht (1T) and the computer solution by Matlock and Reese (10) allow for a more rigorous approach. Their methods allow the use of any variation of k_{H} with depth for static analysis. The true distribution of k_{H} depends on the type of soil, the soil properties, and the stress history of the soil.

The magnitude of the soil quake, Q, is closely related to the value of the soil spring, K. By definition, q is the maximum elastic ground deformation and can be determined from a triaxial stress-strain curve. Q can be calculated if the failure load, P_{f}, (See Fig. 1) and the soil spring, K, are known. McClelland and Focht (11), Gill and Demars (5), Broms (1), Reese (16), and Matlock (9) have all presented methods which can be used to calculate the lateral soil resistance in terms of load per length of pile. When used in conjunction with the equation for displacement of McClelland and Focht (11), Skempton (21), Parker and Cox (14), or Matlock (9), a soil resistance-displacement curve can be generated from which Q can be determined.

Concerning the evaluation of J, Smith (22) arbitrarily
set d equal to 0.15 . Coyle and Gibson (2) modified Smith's equation by raising the velocity, V, to some power, N. For the highly plastic clays tested, they found $N=0.18$ was necessary in order to give J a relatively constant value. They then determined J values empirically from laboratory impact tests. Tucker (25) inclided a damping factor in his solution but gave no value or method to obtain $i t$. Penzein (15) suggested conducting free vibration tasts on clay samples to determine J. Taylor and Highos (23) cor:7uded that energy dissipation in soil approxim rates as:ous darging at low amplitudes and elasto-plastic fhanateristics at high amplitudes. They also noted that sirce the elastic soil modulus is strongly dependent on the strain aniltude, different values will be obtained for different testing ischniques.
jo ̇̇te, available field data for laterally loaded piles reve Sean ificite: so static loading conditions. Data from dyemia tests on laterally loaded piles are not available with Whit to couparo the predicted pile resocnse obtained from the andyite" sixtion dereloped by Ross. Therefore the test progran sonducted in this study was considered necessary.

Obyives. - The objectives of this study are:
\therefore To madart a series of free-vibration dynamic tests in the fioid using mode?, laterally-loaded, instrumented piles driven into stiff clay.
2. To Ghare the measured fynamic response of the model
test piles with the response predicted by the analytical solution developed by Ross (19).
3. To determine the soil parameters necessary to achieve agreement between the measured and predicted dynamic response of the model test pile.
4. To develon theoretical and/or laboratory methods for use in predicting the soil parameters.

FHELD TESTS

Test Site. - In 1969, a research project on the bearing capacity of axially loaded piles was conducted at Texas A\&M University by Rehmet and Coyle (18). A test site consisting of a relatively uniform stiff clay extending to a depth of ten feet was used at the south end of the third runway at the Texas A\&M Research Annex. A soil boring was made by Rehmet and Coyle (18), and the boring \log developed from this boring is shown in fig. 2. The clay was considered to be highly plastic as its plasticity index varied from 29 to 44. Water content determinations were made at the time of testing and unconsoli-dated-undrained triaxial tests were performed on samples procured from the test site. The triaxial tests were made on 1.5 inch diameter undisturbed samples and the resulting stressstrain curves are presented in Appendix III. The unconsolidatedundrained test data were used because the loading rate due to the pile vibration was fast enough to cause an undrained loading condition in the clay.

Test Program. - Tabie 1 presents the test program which was used in this study. The program consisted of a total of 25 tests made on piles of three different diameters. The data for all 25 tests are tabulated in Appendix IV. An identification number was assigned each test to simplify and shorten the

FIG. 2. - BORING LOG OF TEST SITE [After Rebmet and Coyle (18)]
Table 7. - Test Program

```Test Identification Nunber```	Nominal Pile Diameter in Inches	Embedded Lencth in Feet	Length   Above Groundline in Feet	Number of Tests	Conments
3-8-1 thru 3-8-3	3	8	7	3	Tested 1 day after driving
3-8-4 thru 3-8-6	3	8	7	3	Tested 18 days after driving
2-6-1 and 2-6-2	2	6	7		Tested 1 day after driving
2-8-1 and 2-8-2	2	8	7	2	Tested l day after driving
2-8-3 thru 2-8-5	2	8	7	3	Tested at higher frequencies
2-8-6 and 2-8-7	2	8	7	2	Tested in water environment
2-10-1 and 2-10-3	2	10	7	3	Tested 1 day after driving
1-8-1 thru 1-8-3	1.25	8	7	3	Tested 7 day after driving
1-8-4 and 1-8-5	1.25	8	7		Tested 14 days after driving
1-8-6 and 1-8-7	1.25	8	7		Tested 30 days after driving

presentation of the test results. The first number of this identification number is the pile dianeter, the second number is the depth of pile embedment, and the last number is the number of the test made at the specified depth. Other details concerning the tests are listed in the comments section of Table 1. For example, Test 3-8-1 denotes the first test on the 3 inch diameter pile at an embedded depth of eight feet. It was tested one day after it was driven.

Piles of threc different diameters were tested at an er:bedded depth of eight feet to check the effects of different diameters on the response of the pile. The 2 inch pile was tested at enbedded depths of six, eight, and ten feet to check the effects of varying the enbedded lengths. The locations of the strain gages below the groundine were kept the same in all tests as was the length of the pile above the groundine.
in all tests except Tests 2-8-3 thru 2-8-5 and Tests 1-8-1 thru 1-8-7, a 50 pound weight was mounted at the top of the pile in order to reduce the frequency of vibration. The 13 pound attachment used to hold the 50 pound veight increased the tota? weight to 63 pounds. For Test 2-8-3, the 50 pound weight was renoved and for Test $2-8-4$, the 13 pound weight attachment Was aiso removed. For Test $2-8-5$, a 20 inch section of the pile was removed from the top. These three tests which resulted in higher frequencies vere made to study any effect that changing
the frequency rlay have on the pile response.
Tests 2-8-6 and 2-8-7 were conducted while the pile was surrounded by water approximately three feet deep. These two tests were conducted in an attempt to more closely simulate the response of an offshore pile by accounting for the waterpile interaction.

Test Pile Properties and Instrumention. - The model test piles were constructed of standard steel pipe. Since standard steel pipe is rolled and has varyine wall thicknesses, measurements of the inside and outside pile diameters were averaged and ased to salculate the average cross-sectional area, $A$, and the areraso orent citinertio, i, of each pile. These pile properties are presented in Table 2. In all succeeding discussions, pile diameters will be referred to according to the nosinal diameter of the pipe used.

Table 2. - Pile Properties

Nominal   Dianeter   in Inches	Average   Outside   Diameter   in inches	Average   Inside   Diameter   in Inches	Average   Cross-Sectional   Area in Inches   Scuared	Average   Moment of   Inertia in   Inches to the   Fourth Power
3	3.50	3.09	2.145	2.846
2	2.383	2.091	1.026	0.6445
1.25	1.567	1.392	0.661	0.195

A test was made on the 3 inch pile to check its actual stiffness with the calculated stiffness. For a given load, the measured deflections and those calculated, assuming an average wall thickness, agreed within ten percent. However, the method used to measure the deflections was not exact. The maximum deviation in deflection was 0.02 inches and the deflection measurements were accurate to $\pm 0.01$ inches.

Each test pile was instrumented with four fult bridges of strain gages wired to obtain bending moments along the longitudinal axis of the pile. Each bridge consisted of four strain gages with two gages being on each side of the pile where flexure stresses were a maximum. The strain gage bridges were placed so that after the pile was driven to its required depth, the gages would be located at depths below the groundline of six inches, two feet, four feet, and six feet as shown in Fig. 3. In order to install the strain gages on the inside of the pile, it was cut into longitudinal segments. After the gage installation, the pile segments were carefully aligned so that the strain gages would measure the moments about a common axis of bending, and were then welded back together. The welding added to the nonunfromity of the pile but was necessary for the gage installation.

In addition to the strain gages, two accelerometers were attached to the pile, one at the groundline, and one at the pile top as shown in Fig. 3. Strains and accelerations were

Fig. 3. - pile orientation and instrumentation location
recorded with respect to time with a Honeywell Visicorder on light sensitive paper. Also available on several of the tests was an optical tracker which allowed the displacements at the point of the applied force to be recorded during the time of vibration.

Test Procedure. - To more closely simulate the actual soil conditions in the field, each pipe pile was driven into the stiff clay with a drop hammer. The driving of the pile disturbed and remolded the soil into some unknown condition. A length of pipe with a 63 pound concentrated weight at the top was added to the pile above the ground. The pile was loaded horizontally by means of a cable. A quick release mechanism consisting of an electrically operated hoist was used to release the pile. After release, the pile was allowed to vibrate freely until its motion was damped out.

After analysis of the test data, several shortcomings of the test procedure were discovered. The piles were pulled horizontally by a cable at a distance approximately two feet above the groundline. This caused the pile to be bent into a shape other than the shape of its fundamental mode of vibration. Higher frequencies were introduced into the system because the pile was not deformed into its fundamental shape. These higher frequencies quickly disappeared, usually in the first cycle. If the pile were pulled at the top, the pile would be deformed in its fundamental mode and these higher frequencies would not
exist. Each pile was pulled over a different distance and hence a different force was required. It would have been much easier to detect any deviations of the response of the pile due to different diameters or lengths of embedment if all the piles had been pulled with the same force.

An instantaneous release is required for tests of the type made in this study. The electrically operated hoist released the pile too slowly causing the true horizontal load on the pile at the time of release to be lower than the load recorded. As a result, the moments obtained just before release are larger than the actual moments that existed at time zero. Therefore, in correlating the predicted moments with the field moments, the moments at the time of release or tine zero were not used in this study. Instead the correlation begins one half cycle later at the first dynarric moment peak.

## SOLL PARAMETERS FOR THE MODIFIED <br> KEI.VIN-VOIGHT MODEL

As mentioned previously, the modified Kelvin-Voight model used by Ross (19) to describe the behavior of the soil loaddisplacement characteristics for a laterally loaded pile involves using several soil parameters. These parameters which must be determined if the model is to be useful are (1) a linear soil spring, $K,(2)$ a soil quake, $Q$, and (3) a soil damping factor, J.

Soil Spring, K. - The determination of a correct value of $k$ and its distribution with depth can be determined from instrumented pile tests. It is desirable to be able to determine $K$ from a simple laboratory test or a field test. The soil spring, $K$, can be calculated from the coefficient of horizontal subgrade reaction, $k_{H}$. For brevity, $k_{H}$ will be referred to as the soil modulus, and will be designated with a lower case $k$ with subscripts. The soil spring will be designated with a nonsubscripted capital K. The soil spring, $K$, and soil modulus, $k_{H}$, are related in equation form as follows:

$$
\begin{equation*}
K=k_{H} L D \tag{4}
\end{equation*}
$$

where: $L$ is the length of the pile segment
D is the pile diameter
Therefore if $k_{H}$ is known, $K$ can be calculated by multiplying $k_{H}$
by the horizontal projected area of the loaded pile segment.
As a first attempt to determine a value of $k_{H}$, several different theoretical methods published in the literature were investigated. Terzaghi (24) proposed a range of soil modulus values for a one foot square plate in a stiff clay based on the knowledge of the deformation characteristics of stiff clay. Using the average value of soil modulus proposed by Terzaghi (24), a $k_{H}=198$ to. per in. ${ }^{3}$ was determined for the 3 inch pile. vesic (26) developed a theoretical method by which $k_{H}$ could be calculated based on the theory of a beam on an elastic foundation. Using Vesic's equation and the sojl properties determined from the triaxial tests presented in Appendix III, a $k_{H}=193 \mathrm{lb}$. per in. ${ }^{3}$ was calculated. Broms (I) simplified Vesic's equation and using Broms method, a value of $k_{H}=261 \mathrm{lb}$. per in. ${ }^{3}$ as obtained for a 3 inch pile. As shown in Table 3, each of these theoretical methods yield results of the same order of magnitude.

Table 3. - Values of $k_{H}$ for a 3 Inch Pile
In a Stiff Clay

Theoretical Method	$\mathrm{k}_{\mathrm{H}}$ in Pounds Per Cubic Inch
Terzaghi	198
Vesic	193
Broms	261

McClelland and Focht (11) have presented a method of relating empirically the results of full-scale static pile tests to triaxial laboratory test data. They suggest that the stress on a pile in the field is 5.5 times the deviator stress obtained from a consolidated-undrained triaxial test for both at the same percent strain. They also suggest that the strain in the field, $\varepsilon_{F}$, is equal to the pile displacement divided by the pile radius. Using these two suggestions to obtain a field stress versus field displacement curve, a field modulus of horizontal subgrade reaction, $k_{F}$, can be obtained from the tangent slope of this curve. Parker and Cox (14) also related strain and displacement, suggesting the field strain be determined by dividing the pile displacement by the pile diameter. Based on footing tests, Skempton (21) has suggested a third possible method to determine the field strain. He suggests dividing the displacement by twice the pile diameter. Calculating the field stresses using McClelland and Focht's suggestion and using the three suggested methods to determine field strains, the values of $k_{F}$ for the model piles are presented in Table 4. In each case $k_{F}$ was the slope of the tangent on the field stress versus field pile displacement curve. A typical curve used to detemine $k_{F}$ at a four foot depth for the 3 inch pile is shown in Fig. 4. These curves are generated by first calculating the field strain for an assumed pile displacement. The laboratory deviator stress, $\sigma_{\Delta}$, is then determined from the laboratory


FIG. 4. - FIELD STRESS VERSUS DISPLACEMENT FOR 3 INCH PILE AT 4 FOOT DEPTH
stress-strain curve for the corresponding field strain. The field stress for that strain is then calculated as $5.5 \sigma_{\Delta}$ as suggested by McClelland and Focht (11).

Table 4. - Values of $k_{F}$ at $z=4$ Feet

Method	$\varepsilon_{F}$ in   Percent	$k_{F}$ in Pounds Per Cubic Inch		
		$\begin{gathered} 3 \text { Inch } \\ \text { Pile } \end{gathered}$	$\begin{aligned} & 2 \text { Inch } \\ & \text { Pile } \end{aligned}$	$\begin{aligned} & 1.25 \text { Inch } \\ & \text { Pile } \end{aligned}$
McClelland and Focht	$2 \mathrm{y} / \mathrm{D}$	3300	5160	6600
Parker and Cox	$y / D$	1650	2580	3300
Skempton	$y / 20$	825	1290	1650

All soil modulus values are extremely large as compared to the values in Table 3 . Since the value of 5.5 suggested by McClelland and Focht (11) was based on empirical data from a 24 inch pile tested in soft clay, the validity of applying their method to the model piles in this study is questionable. It was found that by using the strain relationship of Parker and $\operatorname{Cox}(14)$

$$
\begin{equation*}
\varepsilon_{F}=\frac{y}{D} \tag{5}
\end{equation*}
$$

and by assuming the field stress was equal to the triaxial deviator stress,

$$
\begin{equation*}
\sigma_{F}=\sigma_{\Delta} \tag{6}
\end{equation*}
$$

a soil modulus value of the same order of magnitude as the
values in Table 3 could be obtained.
Instead of using the field strain-displacement relationships which are functions of the pile diameter, it was fett that the soil modulus should be a soil parameter which is constant for any given soil. Therefore, a curve of the triaxial deviator stress versus the laboratory soil deformation, $\Delta L$, was used. This laboratory soit modulus is designated as $k_{L}$ since it is determined as the tangent slope of a laboratory unconsolidatedundrained triaxial test.

The family of curves in Fig. 5 was generated by testing undisturbed soil samples at various depths. Using $k_{L}$ for each depth as the slope of the tangent of the corresponding $\sigma_{\Delta}$ versus $\Delta L$ curve, a $k_{L}$ distribution with depth was obtained. This distribution was used in the prediction of the pile response in this study and is shown in Fig. 6. For this study, a soil spring was placed at the location of each strain gage as well as at the groundline and pile tip. Also shown in Fig. 6 with the $k_{L}$ distribution with depth is the complete idealized pile used in this study.

Since the lengths of the soil specimens in the triaxial tests were greater or equal to the pile diameter, the determination of the soil modulus from a $\sigma_{\Delta}-\Delta L$ plot is considered reasonable. The value of $k_{L}$ is independent of the pile diameter and is strictly a soil property. The values of $K$ are dependent on the pile diameter as indicated by Equation 4 and


FIG. 5. - DEVIATOR STRESS VERSUS DISFLACEMENT FOR VARIOUS DEPTHS, z.


FIG. 6. - IDEALIZED PILE, DISTRIEUTION OF SOIL MODULUS XITH DEPTH AND LOCATION OF SOIL SPRINGS
increase with corresponding increases in pile diameter.
Soil Quake, Q. - The magnitude of the soil quake, $Q$, is closely related to the soil spring values. By definition, the soil quake is the maximum elastic soil deformation. It seems reasonable that $Q$ is a function of the pile diameter and should be reduced as the pile diameter decreases. From work done by Lowery, et.al. (8) on axially loaded piles, a $Q=0.10 \mathrm{in}$. for a full-scale field pile has proved to be satisfactory. Therefore a value of $Q=0.10 \mathrm{in}$. was assumed to be valid for a full-scale laterally loaded pile. It was noted that a $Q=0.10$ in. is approximately one percent of a one foot diameter full-scale pile. Therefore for the model piles used in this study, a $Q$ was calculated for each pile using

$$
\begin{equation*}
Q=.01 \mathrm{D} \tag{7}
\end{equation*}
$$

The value of $Q$ for the 3 inch model pile was calculated to be 0.035 in . and $\mathrm{a} Q=0.024 \mathrm{in}$. and $\mathrm{Q}=0.017 \mathrm{in}$. were calculated for the 2 inch and 1.25 inch piles respectively. These values were used in this study, and in most cases, produced reasonable agreement between the predicted and measured pile response;

Fig. 7 shows how reducing $Q$ affects the ultimate soil resistance as well as the effect that the pile diameter in Equation 4 has on the soil spring, $k$, at a given depth. Equation 4 introduces the effect of the pile diameter on $K$. Each pile has a different $K$ depending on its diameter with the smaller diameter piles having a smaller contact area between the pile and soil


FIG. 7. - EFFECT OF REDUCING SOIL QUAKE, Q, ON THE LOAD, P, FOR A 12 INCH PILE SEGMENT AT $z=2.0$ FEET.
and hence a lower $K$. Consider now the effect of reducing $Q$. First, consider a constant $\mathrm{Q}=0.10 \mathrm{in}$. for all piles. This case is indicated by the dashed 1 ines in Fig. 7. Because of the different $K$ values resulting from the use of Equation 4, the smaller piles have lower ultimate load values at a common $Q$ value. By reducing $Q$ as the pile diameter decreases, as indicated in Equation 7, the allowable ultimate load is reduced even further. This effect is shown in Fig. 7 by the solid lines. For example, by reducing the $Q$ for the 3 inch piles from 0.10 in . to .035 in . by applying Equation 7, the ultimate soil load is reduced from 1260 lb . to 445 lb . which is a reduction of 65 percent. The 1.25 inch pile failure load is reduced 83 percent from 600 lb . to 101 lb . by applying Equation 7. Consequently, the $Q$ value is a very important soil parameter and greatly effects the prediction of the pile response as it controls the load at which soil failure occurs for a given pile segment.

Soil Damping Factor, J. - The value of the viscous damping factor, J , was first suggested to be 0.15 by Smith (22). To obtain a value of $J$ for a stiff clay, Coyle and Gibson (2) conducted a series of laboratory impact tests. Since the value of $J$ varied with the velocity of loading as indicated in Equation 1, they found that by raising the velocity to the power $N=0.18$, J would remain relatively constant for all velocities. Therefore, in this study a value of $\mathrm{N}=0.18$ was
used. From the tests by Coyle and Gibson (2), an initial average value of $\mathrm{J}=0.575$ was used and found to be low for the tests in this study. Using the soil spring values determined from Fig. 6, a $Q=0.035$ and a $N=0.18$ for the 3 inch pile, various $J$ values were assumed until agreement was achieved between the predicted and measured amount of damping. A value of $\mathrm{J}=2.0$ was found to give the best correlation between the measured and predicted responses for the 3 inch pile and was used for all piles.

## COMPARISON OF FIELD AND PREDICTED PILE RESPONSE

As mentioned previously, bending moments with respect to time were determined at four points below the groundline from measured strains and accelerations were measured at the groundline and at the pile top as shown in Fig. 3. All data taken in this study are in Appendix [V. In all tests the moments at the six foot depth, Gage 1, were very small and are not presented or discussed in this study. Gages 2 refers to the strain measurements made at a four foot depth; Gage 3 refers to the strain measurements made at a two foot depth; and Gage 4 refers to the strain measurements made at a six inch depth. Accelerometer data will be presented only for the 3 inch diameter pile tests as these data were not used to determine the parameters needed for the soil model. Acceleration data were recorded on all 25 tests and are tabulated in Appendix IV.

In addition to the soil parameter values of $K, Q, J$, and N needed for use in the Ross solution, a value for structural damping is needed. A preliminary test was made to determine this value. It was found that the structural damping was only $0.3 \%$ of critical damping and for these model piles could be neglected. The deflected shape of the pile at the time of release is also needed as an initial condition and is very critical. A finite element computer program was used to
determine this deflected shape. A known force was applied to the idealized pile above the groundline. Values of the soil springs and the soil quake were assumed and an initial deflected shape of the pile determined for those assumed values. This deflected shape was then used as the initial condition in the Ross solution to predict the dynamic response of the laterally loaded piles. On several of the tests, the displacement at the point of force application was known and was used to verify the initial deflected shape.

3 Inch Pile Tests. - A total of six tests were made on the 3 inch pile, all at an eight foot depth. The data recorded from these tests were considered the most reliable as it was the largest of the three piles tested and any effects of gaps between the pile wall and the soil due to the driving were minimized. The first three tests were conducted one day after the pile was driven. An optical tracker was available for these three tests allowing displacements with respect to time to be recorded. The tracker target was located at the pull line, approximately two feet above the groundline, allowing the displacements to be measured at this point. Figs. 8 thru 11 present the data that were recorded from test $3-8-2$. Also in these same figures is the predicted response of the computer program using a $\mathrm{Q}=0.035$, a $J=2.0$, a $N=0.18$ and $K$ values determined from Fig. 6 . These parameters were determined by the methods discussed in the previous section. Only the peak values of moment and


fig. 9. - bending moment versus time for test $3-8-2, z=2.0$ feet.
$\stackrel{\text { FIELD }}{ } \stackrel{\text { PREDICTED }}{ }$

fig. 10. - bending moment versus time for test $3-8-2, z=4.0$ feet.

displacement were plotted even though the entire sinusoidal shaped curve was recorded. By using only the peaks, the frequency of vibration can be compared as well as the magnitude of the moments and the rate of damping. The frequency measured was 4.5 cycles per second and the frequency predicted was 5.05 cycles per second, an error on the order of ten percent. The frequencies measured at all gage locations were the same for these three tests on the 3 inch pile.

Fig. 8 shows that the moment peaks at Gage 4 (6 inch depth) were within 25 foot-pounds of the field moments, an error of less than ten percent. Since the maximum moments occur in its vicinity, it is the most critical depth. The moments at Gage 3 (Fig. 9) showed a shift of the axis of oscillation which should be the zero moment ine. As seen in Fig. 10, this shift occurred to an even greater extent in the measurements made at the four foot depth by Gage 2. These shifts occurred in all six tests on the 3 inch pile as well as on the tests of the other two diameter piles. Gage 4 always oscillated symmetrically about the zero moment line but Gage 3 always showed a slight shift in the direction of the applied initial force. Gage 2 usually underwent a large enough shift so that it oscillated completely above or below the zero moment line. Since the values of the moments at Gage 2 were small as compared to the moments at Gages 3 and 4 , the deviations from the predicted moments were considered unimportant as they were of the same relative magnitude.

Initially it was thought that the shift might be due to faulty instrumentation since the computer predicted no such shift. However, after carefully checking, this possibility was eliminated and it was decided that this shift actually occurred. Since the shift always occurred in the direction of the pullover, it is believed that during the pullover, the stresses in the soil around the pile were relieved on the side opposite from the direction of pul1. This allowed the clay to rebound some amount thus changing the original zero moment position of the pile. At Gage 3 the forces due to the pile vibrating were large enough so that the pile came close to returning to its original position. However, at Gage 2 where the movements were very small, there was not enough force to fail the rebounded soil and allow the pile to return to its original position. It should be noted that the displacements at Gage 2 were less than 0.001 inches.

If this is the correct explanation of this shift, then the soil properties must be changing with time as the pile vibrates and would be different on each side of the pile. As presently written, the computer program can handle only a soil that has the same properties on both sides of the pile. The program could be easily modified to handle the situation of different soil properties. If the pile had been pulled each direction the same amount before testing, these shifts would probably not have occurred as the soil would have been in the same state of stress
on both sides.
The displacements recorded by the optical tracker for Test 3-8-2 are shown in Fig. 11. The measured displacements were higher than the predicted dispiacements which may be due to a small hole existing around the pile because of the pile driving.

Figs. 12 and 13 show the values of accelerations measured and predicted for Test $3-8-2$. All of the values of the predicted accelerations at the pile top are too large but are within 20 percent of the measured accelerations. The accelerations at the groundline predicted by the computer are difficult to distinguish because of the many high frequencies the computer introduces. The high frequencies are probably caused by the pile hitting the soil when vibrating or possibly because the pile was not displaced into its fundamental node shape. Some higher frequencies were recorded but tended to damp out quickly whereas they did not disappear in the predicted accelerations from the computer. The predicted and measured values are in the same order of magnitude, however.

After a period of 18 days, the 3 inch pile was tested three more times. The purpose of these additional tests was to see if any soil set up occurred and if so, what its effect was on the pile response. The optical tracker was not used for these tests. The bending moment versus time graphs for Test 3-8-5 are shown in Figs. 14 thru 16. Relative magnitudes
$(5,9)$ NOIL\＆甘ヨาヨวัท

of the predicted moments and moments at Gage 4 and Gage 3 agree to within 11 percent. Both Gages 3 and 2 again failed to oscillate symmetrically about a line of zero moment. The predicted and measured amount of damping was very close. The measured frequency of vibration increased to 4.7 cycles per second from the 4.5 cycles per second frequency measured on Test 3-8-2. The pile was pulled over farther in this test than in Test $3-8-2$ and thus reduced the predicted frequency of vibration from the 5.05 cycles per second predicted in Test $3-8-2$ to 4.7 cycles per second. Fig. 17 presents the measured and predicted accelerations at the pile top. The accelerations agree within 20 percent at all times.

Another method of presenting the same data is shown in Fig. 18. The bending moment curve versus depth is plotted for each positive and negative wave of propagation. The solid lines are the predicted curves with the symbols representing the actual field moments. This method of presentation stresses the importance of relative magnitude of the moments for all gages and shows that in design, Gages 4 and 3 are much more critical than the very small values of Gage 2. This method will not be used as it is felt that the method of bending moment versus time curves presents the data more clearly, especially the frequency of vibration and amount of damping.
1.25 inch Pile Tests. - A total of seven tests were conducted on the 1.25 inch pile. This was the smallest diameter

FIG. 14. - BENDING MOMENT VERSUS TIME FOR TEST $3-8-5, z=0.5$ FEET.


FIG. 16. - bending moment versus time for test $3-3-5, z=4.0$ feet.


FIG. 18. - FIELD AND PREDICTED MOMENTS VERSUS DEPTH FOR TEST 3-8-5.
pile used and was tested only at an eight foot embedded depth. The first three tests were conducted one day after driving as with the 3 inch pile. The same test procedures were used. The accelerations which were recorded at the groundline and pile top are not presented here but can be found in Appendix IV. Figs. 19 thru 21 show the bending moments with respect to time for both the measured field data and predicted data of Test 1-8-2. Both Gage 3 and Gage 2 failed to oscillate around the original static zero moment line as discussed previously. A gap was developed around the pile while the pile was being driven. Therefore, it was assumed that the soil had zero resistance at the groundline and was accounted for accordingly in the predicted solution. In an attempt to match the shift at Gage 3 from the static zero moment line, it was assumed that the soil represented by the spring at the six inch depth on the side of the direction of pul 1 was pernanently deformed due to the static loading whereas the opposite side was not. Consequently, the computer solution also gave a similar type shift. Also, there would be no way to get the shift to be completely on one side of the original static zero moment line as shown in Fig. 21 unless the soil moved by rebounding. Therefore, it is felt that the hypothesis of the soil rebounding on one side when the pile was first loaded is a feasible explanation of the moment shift. The values of the moments at Gage 2 were very small and the deviations from the predicted monents, though



large in percent error, were considered unimportant with respect to magnitude.

The value of $J=2.0$ was used for the soil damping constant for the 1.25 inch pile tests and seemed to work adequately. The measured frequency was 2.42 cycles per second whereas the predicted frequency was 2.5 cycles per second, a difference of less than five percent. In terms of percent, agreement at Gage 3 was poor but in terms of magnitude, agreement at Gage 3 was acceptable. At Gage $3, J=2.0$ provided good agreement on one side but was too small for the other side. This substantiates the belief that the soil properties are indeed different on each side of the pile.

After a 14 day period allowed for set up, the 1.25 inch pile was tested two more tines. No rain had occurred in these 14 days so any changes would be due to soil set up. No appreciable changes were detected. After a period of 16 more days during which it rained, the pile was tested its final two times. Figs. 22 and 23 show the results of Test 1-8-6. Even though the pile was pulled with a slightly larger force than was used in Test 1-8-2, the moments in Gage 2 were too small to be measured. Also a large shift occurred in Gage 3 but Gage 4 remained about the same as in the previous tests. The frequency increased almost 17 percent to 2.82 cycles per second. The soil evidently expanded upon wetting and gripped the pile tighter. Consequently the frequency increased and the


FIG. 23. - bending moments versus time for test $1-8-6, z=2.0$ FEET.
moments at Gage 3 decreased as might be expected in a highly plastic stiff clay which had expanded. The effects due to the swelling clay were less pronounced on the 3 inch pile than on tre 1.25 inch pile mainly because the 3 inch pile was much stiffer. Its frequency did show a 4.5 percent increase but the predicted and measured moments showed little variance.

2 Inch Pile Tests. - A third series of tests were made on tue 2 inch diameter pile. The pile was tested twice at a six foot depth, twice at an eignt foot depth, and three times at a ten foot depth to determine if different embedded lengtins affected the response of the pile. Displacements were recorded With the optical tracker on the two six foot depth tests only. Accelerations were recorded but are reported on1y in Appendix IV. All tests were made within one day of driving, and the same pile was used for all tests.

As occurred in the 1.25 inch pile, a hole was developed at the surface while driving the pile to a six foot depth. Tnerefore, no soil resistance on either side of the pile at the groundline was assumed in predicting the bending moments. A small gap was also assumed to occur at the six inch depth due to the driving. Results of Test 1 at the six foot depth, Test 2-6-1, are in Figs. 24 thru 27. The moments at Gage 4 agree closely with the predicted moments. Once again Gage 3 did not oscillate symmetrically about the zero moment line. Again the moments at Gage 2 are extremely small and are considered
500

FIG. 25. - BENDING MOMENTS VERSUS TIME FOR TEST $2-6-1, z=2.0$ FEET.

FIG. 26. - BENDING MOMENTS VERSUS TIME FOR TEST $2-6-1, z=4.0$ FEET.

FIG. 27. - displacement versus time for test 2-6-1 at point of load.
unimportant when compared to the moments at Gages 3 and 4 .
Initially the displacements agree within 13 percent but deviate with time. The same soil damping constant, $\mathrm{J}=2.0$, was used as in the two previous test serjes. However, it appears that for this pile, which is embedded only six feet, a Targer value of damping is needed. The frequency of vibration was measured to be 2.15 cycles per second whereas it was predicted to be 2.0 cycles per second - a deviation of seven percent.

After being tested at a six foot depth, the pile was pulled out. Two feet of pipe were welded to the bottom, and it was then redriven to a depth of eight feet. Two tests were made at this depth. The moments at Gage 4 and Gage 3 of Test 2-8-2 are shown in Figs. 28 and 29. No displacements were recorded and the accelerometer data can be found in Appendix IV. Using the same techniques to get the predicted pile response as was used on the other tests, the moments at Gage 4 agree within 17 percent but tine predicted moments at Gage 3 are extremely high. Tie reason for this is not known. Only by increasing tile soil spring constant or soil quake could the predicted moment at Gage 3 be reduced. Gage 2 moments are extremely small and not considered to be critical. $A J=2.0$ was again used and is apparently too small, making the predicted moments deviate more and more from those in the field tests as time elapsed. The frequency recorded was 1.98 cycles per second

fig. 28. - BENDING MOMENTS VERSUS TIME FOR TEST $2-8-2, z=0.5$ FEET.

whereas the predicted frequency was 2.56 cycles per second, a difference of 22 percent.

A third group of tests in this test series on the 2 inch pile were conducted at an embedded depth of ten feet and consisted of three tests. Again a two foot section was added to the bottom of the pile so that upon redriving to a depth of ten feet, the strain gages would remain at the same depths as in the other tests. The resulting monents at Gages 4 and 3 of Test 2-10-2 are presented in Figs. 30 and 31 . Gage 2 data along with the accelerometer data are presented in Appendix IV. The predicted moment values at Gage 4 are within ten percent near the beginning of the test, but the percent error increases with time because of J being too small. The predicted Gage 3 moment values are 18 percent too nigh and remained so on one side. On the side of the direction of pull, however, much more damping occurred than predicted and the error was much greater. The frequencies deviated by 8.0 percent with the predicted frequency being too high. A gap due to the driving of the pile was assumed to exist around the pile at the groundline.

Five additional tests were made on the 2 inch pile at the eight foot depth. In an attempt to study the effects of frequency, the mass at the pile top was varied three times as discussed previously. For each test, less mass was used than the test before and consequently the frequency of vibration increased. Figs. 32 and 33 present the data from the first of


the three higher freauency tests (Test 2-8-3). As can be seen from these two figures, the measured amount of damping increased greatly for this higher frequency. The value of $\mathrm{J}=2.0$ did not provide sufficient damping in the predicted response so $\mathrm{J}=4.0$ was tried. This higher $J$ value had little effect on the frequency and made little difference in the predicted amount of damping at the six inch depth. At the two foot depth, the larger J value did increase the predicted amount of damping for two cycles on the side opposite of the direction of initial loading. As was the case in Test 2-8-1, the predicted moments are much too high at Gage 3 . The predicted frequency is 4.11 cycles per second as compared to the measured frequency of 3.85 cycles per second.

The final two tests which were conducted on the 2 inch pile were made while it was surrounded by approximately three feet of water. The purpose of these tests was to more closely simulate the field conditions of a pile in the ocean. The measured response and predicted response of Test $2-8-7$ are shown in Figs. 34 and 35. Once again the moments at Gage 3 are lower than those predicted which is consistent for all tests made on the 2 incil pile at the eight foot depth. The frequency predicted was 12.7 percent too high being 2.56 cycles per second as compared to the recorded frequency of 2.27 cycles per second.

Due to the water environment, a drag coefficient and a




mass coefficient were needed to describe the water-pile interaction. These values are dimensionless and the values used were the average values suggested by Ippen (7). The drag coefficient used was 1.05 and the mass coefficient was 1.4. The water environment increased the amount of damping as expected. However, as in all the tests made on the 2 inch diameter pile, the amount of damping was too low. Therefore, the results of these two tests are considered inconclusive.

## SUMMARY OF TEST RESULTS

The problem of predicting the dynamic response of a laterally loaded pile is a very complex one. The complexity of the problem is further increased when the response of a small-scale test pile is being predicted. As is always the case in testing models in soils, scaling is a problem. When full-scale test data are not available, model test data are the next best thing. In this testing program it was found that the effect of a gap between the nile wall and the soil due to the driving of the pile was significant - especially on the two smaller diameter piles. It is felt that the effect of such a gap would not effect the response of a full-scale pile as significantly. For this reason, the field results of the 3 inch pile tests were used in developing the soil parameters for predicting the pile response. These parameters were then applied to the two smaller diameter piles.

Effect of $K$. - The value of the soil spring, $K$, and its distribution with depth appears to be the main parameter that controls the magnitude and distribution with depth of the bending moments in laterally loaded piles. Hence, it is probably the most important of the soil parameters to be evaluated. The distribution of $k_{L}$ with depth and therefore $K$ that is shown in Fig. 6 was used for the predicted response of all the tests.

However, the exact distribution of $k_{L}$ below a four foot depth is not critical. For example, a uniform $k_{L}$ was used in the analysis of Test 3-8-2. As can be seen in Figs. 36 and 37 , there was little or no change in the predicted response when compared to the predicted response using the $k_{L}$ distribution in Fig. 6. This also verified that the various lengths of embedment of the 2 inch pile had little or no effect since all were embedded more than six feet. For these tests, especially for the two smaller diameter piles, the spring located at the six inch depth proved to be the most critical and was very sensitive to change.

The values of $K$ also influence the frequency. A less stiff soil is modeled by lowering the $K$ values which then causes the first inflection point of the pile to be located deeper in the ground. Therefore, the point of maximum moment is shifted deeper in the ground and the frequency is reduced because of having a greater length to vibrate.

As seen in Fig. 1, unon unloading, the soll was assumed to rebound at the same slope $K$, as when it was loaded. It is felt that the solution by Ross should be modified to handle the amount of rebound as a separate parameter. As a senarate parameter, the rebound could be varied easily; and its effects on the pile response studied,

As presently accounted for in the Ross solution, the values of $K$ remain constant with respect to time for a given denth.



However, due to cyclic loading, it is felt that the soil is remolded and that $K$ should become smaller with time or with the number of loading cycles. Presently there is no way to account for such a change in $K$ in the Ross solution and any such modification would probably be quite complex.

Effect of Q. - The soil quake, Q, as well as the soil spring, $k$, influences the magnitude of the moments in the piles. $Q$ is related to the pile diameter as indicated in Equation 7 and decreases as the pile diameter decreases. The smaller $Q$ values in turn cause smaller ultimate loads for the clay as indicated in Fig. 7. Therefore it is $Q$ and $K$ together that determine the ultimate load and displament the soil can undergo before failing. For example, a $K=100 \mathrm{lb}$. per in. and a $Q=$ 0.10 in . would allow an ultimate load of 10 lb . By reducing K to 50 lb . per in . and increasing Q to 0.2 in ., the ultimate soil load remains 10 1b. However, in this second case the soil is less stiff as indicated by the lower $K$ and greater displacements occur with a reduced frequency of vibration.

Effect of $J$ and N. - From all indications, the values of $J$ and $N$ are closely related and are a complex function of velocity, pile diameter, pile length, frequency of vibration, as well as other variables based on the soil and pile properties. It is beyond the scope of this paper to study this problem in the detail necessary but additional work in this area, perhaps in the form of a parameter study, could be quite revealing.

Perhaps the modification mentioned previously of allowing $K$ to be reduced due to load cycling would aid in the study of
finding $J$. By reducing $K$ with time, the rate of damping would also be increased. As predicted in this study, the rate of damping after the first cycle always seems to be linear whereas the measured fieid results are nonlinear. By increasing $N$ so that the velocity of the pile has a greater influence on the rate of daming, such a nonlinear rate of damping could possibly be predicted.

From these tests, several interesting observations were made regarding the damping of the soil. Ross (19) indicates that the effect of the soil damping is very small for a typical offshore pile. This may be true in the case of wave loadings on offshore piles where frequencies are very slow. However, in this study with higher frequencies, a value of $J=2.0$ was necessary for the predicted pile response to match the measured response on the 3 inch pile tests. For the 1.25 inch pile tests a value of $J=2.0$ generally produced good agreement between the predicted and measured pile response. However for the 2 inch pile, the damping predicted with $J=2.0$ was in all cases too low. In the tests on both the 1.25 inch piles and 2 inch piles the amount of damping was different on each side of the pile. The piles damped faster on the side in the direction of pullover.

From the test results of Test 2-8-3 which was tested at a
higher frequency, it is evident that the rate of damping is dependent on the frequency of vibration. Since a value of $J=$ 2.0 was used in the prediction of the response and was found to be much too low, a value of $J=4.0$ was tried. The effect of raising $J$ to 4.0 compared to the prediction using $J=2.0$ is shown in Figs. 32 and 33. Such a large increase in $J$ gives a relatively sinall change in the rate of damping. Also, such a strong damping value produces high accelerations and velocities in the computer solution and causes permanent deformation to occur at the pile tip. Therefore, there seems to be a definite upper limit of J that can be used in the Ross solution if $\mathrm{fl}=$ 0.18. Based on this finding and the fact that the rate of damping is greatiy increased as the frequency is increased, the effect that $N$ nas on $J$ should be investigated in more detail. Effect of Pile Diameter and Embedded Length. - Tests were made on piles of three different diameters to see what effects changing the diameter would have on the pile response. However, after testing, it was felt that the effect of the pile diameter alone could not be determined as the piles were of different stiffnesses as well as diameters. It would have been much more desirable to have three piles having different diameters but the same moment of inertia and stiffness. If this had been done and all other variables held constant, the only difference in the pile response would have been due to the different diameters. It was also felt that for these
tests, the piles were much too stiff for their corresponding diameters. The frequency of vibration decreased as the pile stiffness and pile diameter decreased.

Tests were made on the 2 inch pile at three different embedded depths to investigate the effect of the embedded length of the piles. No appreciable differences could be determined. All piles vibrated near the same frequency indicating that the soil below the six foot depth had little influence on the response of the pile. The magnitude of the bending moments was unchanged when the enbedded length was increased indicating that the extra length had no effect on the pite response. The monents in Gage 3 of Test 2-6-1 were higher than those in Tests 2-8-2 and 2-10-2. This was due to a larger gap being formed while driving the six foot depth pile than occurred at the other depths and not due to the different embedded lencths.

## CONCLUSIONS

Conclusions based on the correlation of the dynamic response measured from the model pile tests and the response predicted using the solution of Ross (19) are as follows:

1. The modified kelvin-Voight rheological model used by Ross (19) to describe the nonlinear soi? loaddisplacement relationship may be used to predict the dynamic response of a laterally loaded pile.
2. Laboratory triaxial tests can be used to determine the soil modulus. The distribution of the soil modulus with depth can be determined by testing soil samples fron different deptis. For the mode 1 piles in the relatively homogeneous stiff clay used in this study, a uniform distribution with depth of $k_{L}$ is a satisfactory approximation. The $k_{L}$ values can then be used to calculate the soil spring, $K$, values.
3. The soil quake, $Q$, is a function of the pile diameter. Based on the results from these model tests, $Q$ can be approximated as one percent of the pile diameter.
4. The $K$ and $Q$ parameters govern the magnitude and distribution of the bending monents with depth. From this study it was found that the shallow depths were
very critical in predicting the pile response. For these model piles, the displacements were very small below a depth of two feet indicating that at some depth between two and four feet the soil had little influence on the response of the pile. Therefore the values of $K$ and Q below this critical depth are unimportant in predicting the dynamic pile response of a laterally loaded pile.
5. For the tests on the 3 inch pile in this study, a value of $J=2.0$ with $N=0.18$ gives satisfactory agreenent between the predicted and measured amount of damping.
6. The amount of damping increases as the frequency increases and is significant at the frequencies encountered in these tests. The frequency of vibration of the pile may be increased by increasing the pile stiffness, by increasing $K$, by increasing 3 , or by decreasing the amount of mass at the pile top.

In summary, the work accomplished by this research provides possible methods by which the necessary parameters for use in the Ross solution for the dynamic response of a laterally loaded pile can be determined. These methods are based on model tests, however, and may need to be modified before being applied to full-scale tests. The next logicat step would be to
conduct a similar study using full-scale pile test data.

## RECOMMENDATIONS

The following areas are recommended for further research:

1. Tests similar to those conducted in this research need to be made on full-scale piles. The conclusions from this study apply on 1 y to these model tests in a stiff clay and should be applied to fult-scale piles only after more study on the problem has been completed.
2. If additional model tests are conducted, it is recommended that more strain gage bridges be used and closely spaced in the critical shallow depths of the embedded length. Piles of different diameters but the same moment of inertia should be tested in order to more clearly define the effects of the pile diameter on the dynamic response of the pile. All piles should be loaded with the same force at the pile top and should be tested in steady state motion as well as in free vibration. For an instantaneous release. in the free vibration tests, the pile should be pulled by a single strand wire and cut.
3. An extensive parameter study needs to be made using the Ross analytical solution to more fully understand the relationship between the soil damping factor $J$ and the exponent $N$ and their dependence upon
the frequency of vibration and velocity of the pile. A paraneter study concerning $K$ and $Q$ and a better understanding of their relationship could also prove to be useful. Detemining exactly how these Darameters are interrelated should aid significantly in determining methods by which they could be evaluater.
4. The analytical solution of Ross should be modified so that the rebound and permanent set due to failure of the soil can be varied. it is also desirable to be able to use different soil properties on each side of the pile and to change the soil properties with time or cycles of loading.
5. Dynafic nodel field tests should be conducted in sand to see if the modified Kelvin-Voight is a valid model for cohesionless soils. Studies similar to the ones made in this research should be made on the sand carameters to more fully understand the soil loac-displacement relationship under dynamic laading conditions.

## AOPMDX I - RGFRENCE

1. Broms, B. B., "letera: peratence of piles in Conesive Soils," Journal af the 1 , Mechaics and Foundations Division, ASC, vol. 9. $\because$, Math, 1964, pp 27-63.
2. Coyle, H. M., and Gibe.. . C., "inpiricil Damping Constants for Sande and Clays, "cos at the soli Mechanics and and Foumatine uniso, : pp $946-965$.
 Subjected to Mormt, sar ar nx: load, "PhD Disserta-

3. Davisson, M. T., and in, L. Laterally Loaded Piles in a Layemd Soll Sustem, wome the Soil Mechanics and

4. Gill, H. L. and Demars, H. A. "oisphament of Laterally Loaded Structucs in Womhtoar? Responeive Soil," Technical Report R-670, davia fir? rineoning Laboratory, Port Hueneme, Calfomio, Apri Jic.
5. rieser, S. U., "Morai Tad Tests on Vertical Fixed-Head and Free-Hed fi"s "wnem on lateral load Tests on Piles, Gecialernitiblion No. 154, ASTM,
Philadelana
6. Ippen, A. - . O Oditon, S-Gary and Coastline Hydrodynamics, McGraw-Hitl Brot sman ormated, 1065, Dp 357-363.
7. Lowery, L. . . . . H: . . Finards, T. C., Coyle, H. M, and ©an , 6.4. . Pile-mriving Analysis State of the fir, Meser, Wrart No. 33-13, Tevas
 100.
8. Mat ock, R., 'Gimataine besim of Laterally Loaded piles in Soft Clat : pantrts if the 1970 Offshore Tech-


9. Matlock, H., and Reese, L. C., "Generalized Solutions for Laterally Loaded Files," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 86, SM5, October, 1960, pp 63-97.
10. McClelland, B., and Focht, J. A., Jr., "Soil Modulus for Laterally Loaded Files," Transactions, ASCE, Vol. 123, 1958, pp 1049-1086.
11. Palmer, L. A., and Brown, F'. P., "Analysis of Pressure Defiection, Moment, and Shear by the Method of Difference Equations," Symposium on Literal Load Tests on Piles, Supplement, Special Technical Publication No. 154-A, ASTM, Philedelphia, Pa., 1954, Pp 22-32.
12. Palmer, L. A., and Thompson, J. B., "The Earth Pressure and Deflection Along the Embedded Lengths of Piles Subjected to Lateral Thrust," Proceedings, Second International Conference on Soil Mechanics and Foundations Engineering, Rotterdam, Holland, Vol. V, 1948, pp 156-161.
13. Farker, F., Ir., and Cox, W. R., "A Method for the Analys is of Pile Supported Foundations Considering Nonlinear Soil Behavior," Research Report No. 117-1, Center for Highway Research, University of Texas, June, 1969.
14. Fenzien, J., "Soil-Pile Foundation Interaction," Earthquake Engjneering, Wiegel, R. L., Coordinating Editor, PrenticeHal1, Incorporated, Englewood Cliffs, New Jersey, 1970, pp 349-381.
15. Reese, L..C., Discussion of "Soil Modulus for Laterally Loaded Piles." Transactions, ASCE, Vol. 123, 1958, pp 1071-7074.
16. Reese, L. C., and Matlock, H., "Non-dimensional Solutions for Laterally Loaded Piles with Soil Modulus Assumed Proportional to Depth," Proceedings, Eighth Texas Conference on joil Mechanics and Foundation Engineering, Bureau of Engineering Research, University of Texas, September, 1956.
17. Rehnet, J. D., and Coyle, H. M., "Preliminary Study of InSitu Measurements of Friction and Bearing in Clay," Research Report 125-3, Texas Transportation Institute, Texas A\&M University, September, 1969.
18. Ross, H. E., Jr., "Dynamic Response of Offshore Piling," PhD Dissertation, Texas A\&M University, August, 1970.
19. Samson, C. H., Jr., Hirsch, T. J., and Lowery, L. L., Jr., "Computer Study of Dynamic Behavior of Piling," Journal of the Structural Division, ASCE, Paper No. 3608, ST4, August, 9663.
20. Skempton, A. W., "The Bearing Capacity of Clays," Building Research Congress, Division 1, Part 3, London, 1951, pp 180-189.
21. Smith, E. A. L., "Pile-Driving Analysis by the Wave Equation," Journal of the Soi] Mechanics and Foundations. Division, ASCE, Paper No. 2574, SM4, August, 1960.
22. Tayior, P. H., and Hughes, J. M. 0., "Dynamic Properties of Foundation Subsoils as Determined from Laboratory Tests," Proceedings, Third World Conference on Earthquake Engineering, VoT. 1, pp I-T96 to I-212.
23. Terzaghi, K., "Evaluation of Coefficients of Subgrade Reaction," Geotechnique, London, Vol. V, No. 4, 1955, pp 297-326.
24. Tucker, R. L., "Lateral Analysis of Piles with Dynamic Behavior," Proceedings, Conference on Deep Foundations, Mexico City, December, 1964.
25. Vesic, A. B., "Bending of Beams Resting on Isotropic Elastic Solid," Journal of Engineering Mechanics, ASCE, Vol. 87, EM2, Apri1, 1967, pp 35-57.

APPENDIX II. - NOTATION

The following symbols are used in this paper:

$$
\begin{aligned}
& A= \text { cross-sectional area in square inches } \\
& D= \text { pile diameter in inches } \\
& E= \text { modulus of elasticity in pounds per square inch } \\
& G= \text { gravitational acceleration } \\
& I= \text { noment of inertia in inches to the fourth power } \\
& l= \text { soil damping factor in seconds to the } A \text { power } \\
& \text { per foot to the } N \text { power } \\
& K= \text { soil spring constant in pounds per inch } \\
& k_{F}= \text { field modulus of horizontal subgrade reaction } \\
& \text { in pounds per cubic inch } \\
& k_{H}= \text { soil modulus of horizontal subgrade reaction in } \\
& \text { prunds per cubic inch } \\
& k_{L}= \text { laboratory modulus of herizontal subgrade } \\
& \text { reaction in pounds per cubic inch } \\
& k_{5}= \text { soil modulus of subgrade reaction in pounds per } \\
& \text { zubic inch } \\
& L_{A}= \text { length of pile above the groundline in feet } \\
& L_{E}= \text { enbedced length of pile in feet } \\
& I= \text { pength of pile segment in icealized model in } \\
& N= \text { inches } \\
& A
\end{aligned}
$$

```
P = horizontal 1oad in pounds
 P}=\mathrm{ horizontal failure load in pounds
P static = horizontal static load in pounds
Pdynamic}= horizontal dynamic load in pound
 psi = pounds per square inch
 Q = maximum elastic deformation of the soil or quake
 in inches
 V = velocity in inches per second
 y = displacement in inches
 z = depth in feet
 a= constant based on pile properties
 \varepsilon
 \varepsilon
 Al = deformation of triaxial specimen in inches
 \sigma
 inch
 \sigma
```


## APPENDIX III. - LABORATORY SOLL TEST DATA

On the following pages are the deviator stress versus strain curves for the stiff clay in which the model tests for this study were made. The curves are from unconsolidatedundrained triaxial tests conducted on 1.5 in. diameter samples.


DEVIATIR STRESS VERSUS STRAIN, $z=2$ FT


DEVIATOR STRESS VERSUS STRAIN, $z=4 \mathrm{FT}$


DEVIATOR STRESS VERSUS STRAIN, $z=6$ AND 7 FT

## APPENDIX IV. - FIELD DATA

On the following pages are the field data for all 25 tests conducted in this study. The following notation is used:

Gage 1 - Bending moments determined at a depth of six feet

Gage 2 - Bending moments determined at a depth of four feet

Gage 3 - Bending moments determined at a depth of two feet

Gage 4 - Bending moments determined at a depth of 0.5 feet

Gage 5 - Accelerations measured at the groundline
Gage 6 - Accelerations measured at the pile top
Gage 7 - Displacements measured at the point of force application

Displacements were not recorded on all 25 tests. Bending strains were measured by Gage 1 on the 3 inch pile tests only. Gage 1 measured no strains at the six foot depth in the 2 inch and 1.25 inch pile tests.
$\frac{\text { Gage } 7}{\text { Displace- }}$




$$
\begin{aligned}
& \text { Test 3-8-1 }
\end{aligned}
$$


 Tine
Ses

$$
\text { Gace } 2
$$


范


$\therefore$	
-1 0	
$8{ }^{\circ}$	.


15	Gr-mnomNmNNLMNNNORLNmOOnNT
$\text { on } \begin{aligned} & \text { a } \\ & \hline \end{aligned}$	
8	
\%	




$\qquad$




$\stackrel{\stackrel{0}{[ }}{\stackrel{y}{*}}$





○N甘







 1 abey
号





兑









Gage 6
Time eration
Sec $\quad G$







$$
\begin{aligned}
& \begin{array}{r}
\stackrel{\leftrightarrow}{E} \cup \\
\stackrel{\sim}{-}-\stackrel{1}{\Omega}
\end{array}
\end{aligned}
$$




.	¢ை000\%
$1-6$	-r-rrownuncm


$\pm$		以  




Test 1-8-6


$\stackrel{0}{\sim}$	¢OMM№


Gage 5
Acceleration
$G$

.00
. .718
-.065
.041
-.020
.037
-.037
.0037
-.008
.037
-.004
.033
-.00
.033
-.00
.033
-.00
.029
.004
关品
in
in

 फg

 $\begin{array}{cc}c & \text { Gage ? } \\ \begin{array}{ll}\text { Ti@e } & \text { Monent } \\ \text { Sec } & \text { Ft-Lbs }\end{array} \\ .00 & .00\end{array}$












$\stackrel{1}{\square}$	
$0$	
8 -	- . . . . . .
crser	





号

 Time
Sec








 Gage 4

Moment
Ft-Lbs





Gage 2



Tine
Sec


Gage 6
Acceleration G
. 009
.174
. 128
-. 085
. 043
-. 026
. 030
-. 015
. 026
-. 011
. 021
-. 009
. 021
$-.004$
. 021
- . 002
. 017
-. 00
. 017
. 002
. 019


Q	
$\cdots$	
1-6)	- -r-NNo


Gage 5
Gage 5
Acceleration
$G$
$\underset{\sim}{\text { E }}$



$\square$
0
0


Time
Sec


Monent
Ft-Lbs
 Gage 3
Tine
Sec


Tire
Sec






$\qquad$

 Gace 5




Gage 6Acceleration


Acceleration



品



씅




Gage 4
$\substack{\text { Monen } \\ \text { Ft-Lb }}$








 $\stackrel{\stackrel{N}{8}}{\stackrel{y}{*}}$



岂
$\stackrel{y}{\circ}$
品



응


Test 2-10-2







